Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation.
نویسندگان
چکیده
The cerebellum is critically important for error-driven adaptive motor learning, as evidenced by the fact that cerebellar patients do not adapt well to sudden predictable perturbations. However, recent work has shown that cerebellar patients adapt much better if the perturbation is gradually introduced. Here we explore physiological mechanisms that underlie this distinction between abrupt and gradual motor adaptation in humans. We used transcranial magnetic stimulation to evaluate whether neural mechanisms within the cerebellum contribute to either process during a visuomotor reach adaptation. When a visuomotor rotation was introduced abruptly, cerebellar excitability changed early in learning and approached baseline levels near the end of the adaptation block. However, we observed no modulation of cerebellar excitability when we presented the visuomotor rotation gradually during learning. Similarly, we did not observe cerebellar modulation during trial-by-trial adaptation to random visuomotor displacements or during reaches without perturbations. This suggests that the cerebellum is most active during the early phases of adaptation when large perturbations are successfully compensated.
منابع مشابه
Abrupt, but not gradual visuomotor distortion facilitates adaptation in children with developmental coordination disorder.
A previous experiment investigating visuomotor adaptation in typically developing children and children with Developmental Coordination Disorder (DCD) suggested poor adaptation to an abruptly induced visuomotor perturbation. In the current study, using a similar center-out drawing task, but administering either an abrupt or a gradual perturbation, and twice as many adaptation trials, we show th...
متن کاملDissociating the Roles of the Cerebellum and Motor Cortex During Adaptive Learning
Adaptation to a novel visuomotor transformation has revealed important principles regarding learning and memory. Computational and behavioral studies have suggested that acquisition and retention of a new visuomotor transformation are distinct processes. However, this dissociation has never been clearly shown. Here, participants made fast reaching movements while unexpectedly a 30-degree visuom...
متن کاملDissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns.
Adaptation to a novel visuomotor transformation has revealed important principles regarding learning and memory. Computational and behavioral studies have suggested that acquisition and retention of a new visuomotor transformation are distinct processes. However, this dissociation has never been clearly shown. Here, participants made fast reaching movements while unexpectedly a 30-degree visuom...
متن کاملChanges in corticospinal excitability during reach adaptation in force fields.
Both abrupt and gradually imposed perturbations produce adaptive changes in motor output, but the neural basis of adaptation may be distinct. Here, we measured the state of the primary motor cortex (M1) and the corticospinal network during adaptation by measuring motor-evoked potentials (MEPs) before reach onset using transcranial magnetic stimulation of M1. Subjects reached in a force field in...
متن کاملFormation of model-free motor memories during motor adaptation depends on perturbation schedule.
Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 34 شماره
صفحات -
تاریخ انتشار 2012